Lecture 5 - January 24
Math Review
Relations

Announcement

- Labl submission due in a week
+ tutorial videos
+ problems to solve
+ Study along with the Math Review lecture notes.

Sets: Exercises $\quad \begin{aligned} & \frac{4 \leqslant 7 T}{} \\ & 4 \geqslant 7 F \\ & 4 \geqslant \notin S \equiv \neg(e \in S)\end{aligned}$
Set membership: Rewrite e $\notin S$ in terms of \in and \neg
Find a common pattern for defining:

1. = (numerical equality) via \leq and \geq
2. \leftrightharpoons (set equality) via \subseteq and \supseteq
$\rightarrow \forall x, y \cdot x \in \mathbb{Z} \wedge y \in \mathbb{Z} \wedge$
3.

$x=y \Rightarrow$

$x \geqslant y \wedge x \leq y$.

Is set difference (\backslash) commutative?
No.
(exectre!). S\U US

Bidirectional Subset Relations: Programming
/* Return the set of positive elements from input. */ HashSet<Integer> allPositive(HashSét<Integer> input)

Formulate the 'allPositive' method using a set comprehension.

$$
\begin{aligned}
& \text { Trout }=\left\{2, z_{s},-1,4_{s}-2\right\} \\
& \text { all } P_{\text {ositwe }}(\text { input })=\{2 z 3,4\} \\
& \wedge x \in \text { put. } \\
& \text { allPositive }(\text { input })=\left\{x \left\lvert\, \begin{array}{c}
\frac{x>0}{\text { not complete }}
\end{array}\right.\right\}
\end{aligned}
$$

Bidirectional Subset Relations: Programming
/* Return the set of positive elements from input. */ HashSet<Integer> allPositive(HashSet<Integer> input)

Say:

- S denotes the subset all positive elements from 'input.
- Set 'output' denotes the return value from 'allPositive'.

Formally relate the two sets S and output.

(U)
$\left.\begin{array}{l}\text { (pl) output } \subseteq S \\ (p) S \subseteq \text { output }\end{array}\right\} S=$ output

- What if only pl is required? peg. ϕ Pl
- What if only $P Z$ is required? e.g-ounfupk

(PI) $\forall x \mid x \in$ output $\Rightarrow \begin{aligned} & x>0 \\ & x \in S\end{aligned}$
(PI) $\forall x \mid \underbrace{x \in \operatorname{mont} \wedge x>0}_{x \in S} \Rightarrow x \in$ output
$\phi \subset S$
The if $|S|>0$
False if $|S|=0$

flexible: eng. how many
Cardinality of Power Set: Interpreting Formula subsets of
\rightarrow raid between
Calculate by considering subsets of various cardinalities. ℓ and u
calculate by considering whether a member should be included.

$$
G
$$

$$
\begin{aligned}
& \begin{array}{c}
\{6\} \\
\{c\}
\end{array} \\
& |S| \quad S=\{a, b, c\} \\
& \begin{array}{llll}
a & b & c & \text { subset } \\
0 & 0 & 0 & \phi \\
0 & 0 & 1 & \{c\}
\end{array} \\
& 111\{a, b, c\}
\end{aligned}
$$

Lecture 1b

Review on Math: Relations

Set of Tuples $\left|S_{1} \times S_{2} x \cdots \times S_{n}\right|=\left|S_{1}\right| \notin\left|S_{2}\right| * \cdots *\left|S_{n}\right|$ coosppoduct multeptriation
Given n sets $\left(S_{1}\right) S_{2}, \ldots, S_{n}$, a cross/Cartesian product of theses sets is a set of n-tuples.
Each n-tuple ($e_{1}, e_{2}, \ldots, e_{n}$) contains n elements, each of

$$
\left.S_{1} \times S_{2} \times \cdots \times S_{n}=\left\{\left(Q_{1}, \Theta_{2}\right) \cdot:, e_{n}\right) \mid e_{i} \in S_{i} \wedge 1 \leq i \leq n\right\}
$$

Example: Calculate $\{a, b\} \times\{2,4\} \times\{\$, \&\}$

$$
\text { Si }\{a, b\} x^{s_{2}}\{2 ; 4\} x^{s}\{\$; 8\}
$$

8 members.

Relation: set of pairs
eeg. Relation on $\frac{\{1,2,3\}}{S_{1}}$ and $\frac{\{a, b\}}{S_{2}}$.

- Is $(1, a)$ a relation on S_{1} and S_{z} ? No! $i^{2} \geqslant$. Is $\{(b, 2)\}$ a relation on S and S_{2} ?
(Q) (IC Si elements should ampere first an the ordered pair
$\left\{\phi^{3} \stackrel{\text { 年 }}{\rightleftarrows}\{(1, a)\right.$, (3) bi\} a relation on S and $\sqrt{2}$?
- intinctmum relation on SI and S_{2} ? $\phi \rightarrow$ emplatroce!
- "Naximinar relation on S_{1} and $S_{2} ? S_{1} \times S_{2}$

Given two sets \underline{S} and I :

- min relation: ϕ
- max relation: $S \times T$
set ${ }^{\circ}$ All possible relations on S and T :

