Lecture 5 - January 24

Math Review

Relations

- Lab1 submission due in a week
 - + tutorial videos
 - + problems to solve
 - + Study along with the Math Review lecture notes.

Sets: Exercises

<u>Set membership</u>: Rewrite $e \not\in S$ in terms of \in and \neg

Find a common pattern for defining: 1. = (numerical equality) via \leq and $\geq \neg \forall \tau, \psi \cdot \tau \in \mathbb{Z} \land \psi \in \mathbb{Z} \land$ x = y 2. \leq (set equality) via \subseteq and \supseteq $\chi_{\gg} \gamma \land \chi \in \gamma$. $S = \{1, 2, 3\}, T = \{2, 3, 1\}, U = \{3, 2\}$ ⊆Ē ⊆ **(T)** ¢ (T) ⊆ (T) CE LHS ⊆⑦ ⊂⑦ ⊆(E) ⊂ (F) $\subseteq \bigcirc \subset \bigcirc \square \subseteq \bigcirc \subset \bigcirc \square \subseteq \bigcirc \subset \bigcirc \square \subseteq \bigcirc \subset \bigcirc \square (exo(\pi e^{l})).$

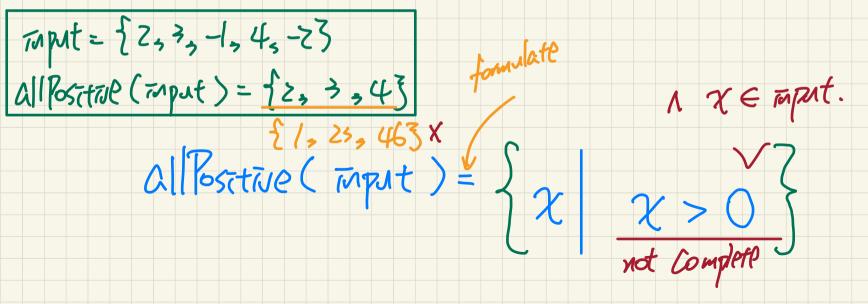
 $e \notin S \equiv \pi(e \in S)$

Is set difference (\) commutative?

Bidirectional Subset Relations: **Programming**

/* Return the set of positive elements from input. */
HashSet<Integer> allPositive(HashSet<Integer> input)

Formulate the `allPositive` method using a set comprehension.



Bidirectional Subset Relations: Programming Post-Condition

/* Return the set of positive elements from input. */
HashSet<Integer> allPositive(HashSet<Integer> input)

(pl) output $\subseteq S \ Z \ S = output$ $(p2) S \subseteq output S \ (m m)$

• What if only pl is required? e.g. q • What if only p2 is required? e.g. quit

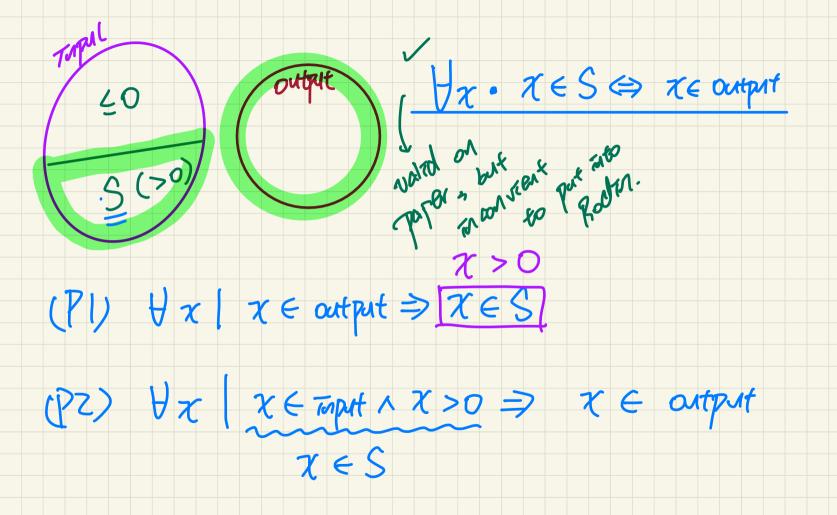
Say:

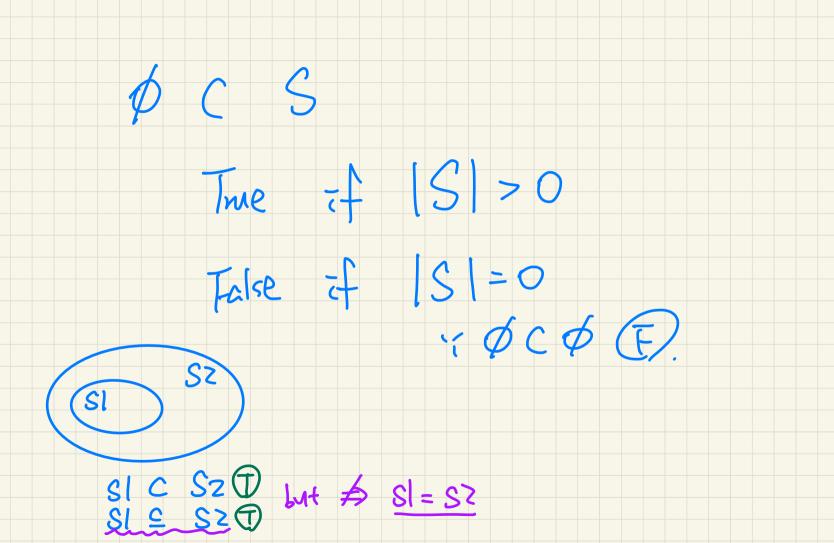
40

1-0)

- S denotes the subset all positive elements from `input`.
- Set `output` denotes the return value from `allPositive`.

Formally relate the two sets S and output.

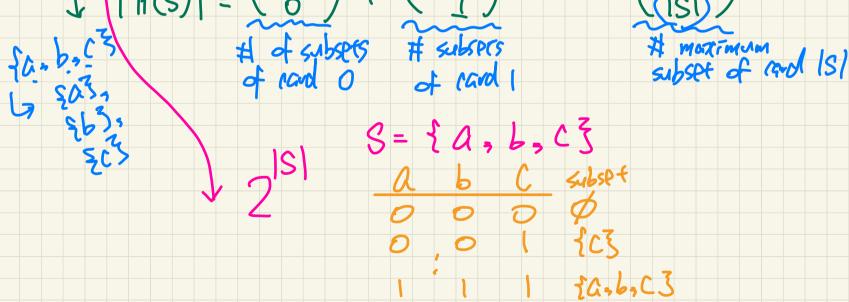




Cardinality of Power Set: Interpreting Formula

- Calculate by considering subsets of various cardinalities.
 - / Calculate by considering whether a member should be included.

flexible: e.g. how



Review on Math: Relations

Set of Tuples

Given *n* sets $S_1 S_2 \ldots, S_n$, a *cross/Cartesian product* of theses sets is a set of *n*-tuples.

Each *n*-tuple $(e_1, e_2, ..., e_n)$ contains *n* elements, each of which a member of the corresponding set. $S_1 \times S_2 \times \cdots \times S_n = \{(e_1, e_2, ..., e_n) \mid e_i \in S_i \land 1 < i < n\}$

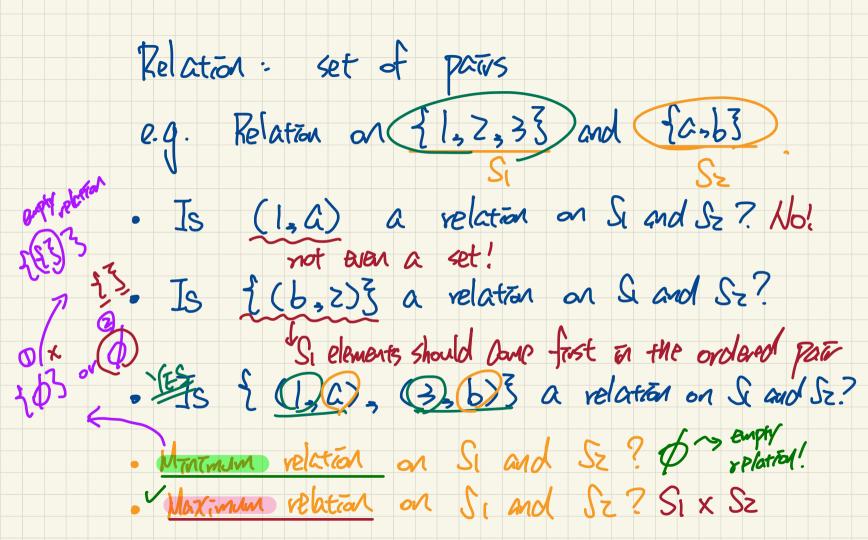
Example: Calculate $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$ Si $\{a, b\} \times \{2, 4\} \times \{\$, \&\}$

exertise

$$= \frac{1}{(e_1, e_2, e_3)} | e_1 \in \frac{1}{(a_1, b_3)} | e_1 \in \frac{1}{(a_1, b$$

SIX SzX ... X Sn = ISI + Sz + ... × Sn = ISI + ... × Sn

e



Given two sets S and T: - min velation : Ø - max relation: SXT All possible relations on S and T: each memb velation of card of covol of card ISIX ITI